Practical central binomial coefficients
نویسندگان
چکیده
منابع مشابه
New Congruences for Central Binomial Coefficients
Let p be a prime and let a be a positive integer. In this paper we determine ∑pa−1 k=0 ( 2k k+d ) /mk and ∑p−1 k=1 ( 2k k+d ) /(kmk−1) modulo p for all d = 0, . . . , pa, where m is any integer not divisible by p. For example, we show that if p 6= 2, 5 then p−1 ∑
متن کاملSome congruences involving central q-binomial coefficients
Motivated by recent works of Sun and Tauraso, we prove some variations on the Green-Krammer identity involving central q-binomial coefficients, such as n−1 ∑ k=0 (−1)kq−(k+1 2 ) [ 2k k ] q ≡ (n 5 ) q−bn 4/5c (mod Φn(q)), where ( n p ) is the Legendre symbol and Φn(q) is the nth cyclotomic polynomial. As consequences, we deduce that 3am−1 ∑
متن کاملStirling's Approximation for Central Extended Binomial Coefficients
We derive asymptotic formulae for central polynomial coefficients, a generalization of binomial coefficients, using the distribution of the sum of independent uniform random variables and the CLT. 1 Stirling’s formula and binomial coefficients For a nonnegative integer m, Stirling’s formula m! ∼ √ 2πm (m e )m , where e is Euler’s number, yields an approximation of the central binomial coefficie...
متن کاملOn Congruences Involving Central Binomial Coefficients
Let p be a prime, and let d ∈ {0,. .. , p a } with a ∈ Z +. In this paper we study P p
متن کاملAsymptotic Expansions of Central Binomial Coefficients and Catalan Numbers
We give a systematic view of the asymptotic expansion of two well-known sequences, the central binomial coefficients and the Catalan numbers. The main point is explanation of the nature of the best shift in variable n, in order to obtain “nice” asymptotic expansions. We also give a complete asymptotic expansion of partial sums of these sequences.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Quaestiones Mathematicae
سال: 2020
ISSN: 1607-3606,1727-933X
DOI: 10.2989/16073606.2020.1775156